How CBER is Using Risk Analysis to Inform Decision-making

Steve Anderson, Ph.D., M.P.P.

Office of Biostatistics and Epidemiology
Center for Biologics Evaluation & Research
FDA

Risk analysis process

Use research and scientific information in <u>quantitative analyses</u> to inform risk management strategies

- Estimates likelihood & magnitude of risk
- Evaluate and compare interventions
- Define data gaps and research needs

Risk Assessment (NAS, 1983)

- Microbial and chem/toxicological framework
- A Structured Process consisting of 4 elements:
 - Hazard identification
 - Exposure assessment
 - Dose-response
 - Risk characterization
- Qualitative or <u>Quantitative</u>

Biologic Products

- Blood and blood products
 - Whole Blood, platelets, etc.
 - Immune globulins
 - Clotting factors & thrombolytics
- Vaccines
- Tissues
- Monoclonal antibodies
- Cellular and gene therapy

Biologics requires variety of quantitative approaches

- Blood supply modeling
- Process modeling
 - Continuum from source materials to final product
- Infectious disease modeling
 - Vaccines
- Gene-toxicological modeling
 - Dose-response

Blood Risks – Maintaining Supply & Safety

SARS, West Nile Virus, TSEs, bioterrorism agents, live vaccines (smallpox vaccine), etc.

- Maintaining Adequate Supply
 - Donor Recruitment
 - Blood Utilization
 - Deferrals
- Safety of Blood Products
 - Deferrals
 - Testing
 - Processing inactivation or removal

Whole Blood in the U.S.

- Approximately 14 million units donated / yr
- ~ 40,000 units donated / day
- ~31,000+ units utilized / day

- Approximately 5% population donate
- Store refrigerated for 42 days
- Can donate once every 56 days

US Blood Supply - model results

Risk Modeling of U.S. Blood Supply: Smallpox Vaccination

- U.S. Smallpox Vaccination Program
 - Viremia from vaccine may be a potential risk
 - 21 day vaccination deferral
- Model impact of vaccination on blood supply
 - Vaccinate US population in 21 days
- Model used to evaluate interventions:
 - 200% increase in donations
 - 50% decrease in utilization

US Blood Supply & Smallpox Vaccination 21 day Campaign – U.S. Wide

Blood Supply Interventions – 200% Donation Rate

Smallpox vaccination- 21 day Campaign - U.S. Wide

Blood Supply Modeling & Smallpox vaccination

- Summary Vaccination plans:
- ≥ 21 day vaccination campaign may require 1 or a combination of interventions to maintain supply
 - 200% donation rate
 - 50% decrease in utilization
- >90 days will have little impact on the blood supply

Blood Safety – CJD risks and plasma derivatives

- Creutzfeldt Jakob Disease (CJD) is a human transmissible spongiform encephalopathy (TSE)
 - Neurodegenerative disease onset 65 yrs of age
 - Associated with prion agent
 - No rapid tests for agent & difficult to destroy
- TSE agents may be present in and transmitted via blood products
- Processing of blood plasma derivatives may reduce levels of TSEs and risk

Blood Safety – CJD risks and production of plasma derivatives

 Process models of 3 plasma derivatives to evaluate risk

- Albumin
- Immune globulins
- Factor VIII

- Burn patients, surgery
- Immune disorders
- Hemophilia A

Process Model – Plasma Derivatives

Donors + CJD Donors in US population

Plasma

Processing

•Reduction Steps

Product

•Utilization of Product

Plasma Product

CJD Exposure / Risk

Plasma process model results

Based on SNBTS Process for fractionation (Foster et al, Vox Sang 2000)

CJD (ID₅₀*) per gram / unit basis :

Albumin (g)	10 ⁻⁹ to 10 ⁻¹¹ iv ID ₅₀
Immunoglobulins (g)	10 ⁻⁵ to 10 ⁻⁸ iv ID ₅₀
Factor VIII (250 IU)	10 ⁻⁴ iv ID ₅₀

^{*} ID₅₀ – amount of agent needed to infect 50% of population

Estimating Blood Product Risks: TSEs and Plasma Derivatives

- Models for each product were used to:
 - Estimate potential risk for each product
 - Evaluate impact of processing reduction steps on risk
- Models can be used by FDA and manufacturers to evaluate levels of risk reduction achieved by processing steps

Estimating Blood Product Risks: TSEs and Plasma Derivatives

Models can be used by FDA and manufacturers to evaluate levels of :

Risk reduction achieved by processing steps

Risk should vCJD occur

New Initiative - Infectious Disease / Vaccine Modeling

- HIV vaccines are under development
- No HIV vaccine yet approved for marketplace
- HIV vaccines may be less effective but offer benefit

HIV Vaccine Modeling

- "What if" Modeling can examine Implications for vaccine < 100% efficacy
 - Will it protect?
 - Effect on transmission?
 - Changes in risk behavior?
- Will it be accepted by at risk populations?
 - Coverage
- Can we explore alternative endpoints with model?
 - Relationship decreased viral titer and lifespan

Components HIV Vaccine Model

- Impact HAART therapy + vaccine
- Three levels of risk behavior
 - High, medium, low
- Type of vaccine protection
 - Limited protection to nearly all recipients
 - High level protection to a portion of recipients

New initiative – Risk assessment retroviral gene therapy issues

- Unintended adverse events
 - Recent X-linked Severe Combined Immune Deficiency (X-SCID)
 - 2 of 9 patients treated contracted T-cell leukemia
 - Insertion into LMO-2 oncogene
 - Probably not due to chance
 - What is the probability of such insertion events?

Modeling – retroviral gene therapy

- Components of model
 - Genomic model -
 - Given a ratio of retrovirus to human cells
 - Estimate probability of insertions
 - Number of insertions per cell
 - Transformation model -
 - Probabilities for production and expansion of:
 - Beneficial clones
 - Clones leading to adverse effects
 - Goal can interventions reduce adverse effects?
 - Adjust number of insertions, etc.
 - Use of alternate vectors?

Summary

- Models & risk assessment
- Provide important links between research & policy
 - Can address important policy questions
 - Estimate magnitude of risk
 - Model various risk management strategies
 - Identify data gaps and research priorities